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Abstract

The ingrained principles of fairness in a dia-
logue system’s decision-making process and
generated responses are crucial for user engage-
ment, satisfaction, and task achievement. Ab-
sence of equitable and inclusive principles can
hinder the formation of common ground, which
in turn negatively impacts the overall perfor-
mance of the system. For example, misusing
pronouns in a user interaction may cause ambi-
guity about the intended subject. Yet, there is
no comprehensive study of equitable text gen-
eration in dialogue. Aptly, in this work, we
use theories of computational learning to study
this problem. We provide formal definitions
of equity in text generation, and further, prove
formal connections between learning human-
likeness and learning equity: algorithms for im-
proving equity ultimately reduce to algorithms
for improving human-likeness (on augmented
data). With this insight, we also formulate rea-
sonable conditions under which text generation
algorithms can learn to generate equitable text
without any modifications to the biased train-
ing data on which they learn. To exemplify our
theory in practice, we look at a group of algo-
rithms for the GuessWhat?! visual dialogue
game and, using this example, test our the-
ory empirically. Our theory accurately predicts
relative-performance of multiple algorithms in
generating equitable text as measured by both
human and automated evaluation.

1 Introduction

Machine learning models for text-generation in dia-
logue have trouble learning the “long tail” of a data
distribution; i.e., the data concepts not frequently
observed during training. For example, dataset bi-
ases like gender imbalance can induce a long tail
in training data whereby important data relation-
ships involving gender are underrepresented, like
women in sports (Hendricks et al., 2018). When
training, generative models often fail to learn these
concepts in the long tail, and ultimately, learn in-

Figure 1: Examples from GuessWhat?! dataset, which
consists of game dialogues where a question-player
queries an answer-player to identify a secret goal object
known only to the answer-player. Images containing
men outnumber images with women 2 to 1, forming a
"long tail" in the data distribution. In examples above,
human annotations use visual (contextual) cues to agree
on gender or balk when appropriate. Traditional algo-
rithms can be incorrect and overconfident, inheriting
dataset bias towards male pronouns. Algorithms mo-
tivated by learning theory (LEATHER) are more robust,
utilizing context in a human-like way.

equitable, stereotyping behaviors instead (see Fig-
ure 1). These non-inclusive behaviors not only de-
crease user-satisfaction by isolating users (Mehrabi
et al., 2021), but also impede common ground, hin-
dering the task-success of the dialogue system.

Despite the multi-faceted impact of inequitable
text generation in dialogue, we do not have a com-
prehensive and theoretically grounded framework
for understanding how machines learn to gener-
ate inequitable text and when this outcome can be
avoided. To provide a strong technical foundation
for equitable generation in dialogue, we build on
theories of computational learning (Valiant, 1984;



McAllester, 1998). Specifically, our theoretical
contributions are as follows:
1. We define precise constraints that encapsulate

diverse notions of equity in dialogue (Def. 3.1).
2. We rigorously compare our proposals to tradi-

tional notions of equity in classification (§ 3.1).
3. We show computational learning theory models

equitable learning well: algorithms from learn-
ing theory are easily adapted to learn equitable
dialogue by augmenting data (Thm. 3.1).

4. We prove algorithms based on learning theory
can even learn to generate equitable text from
some types of biased training data (Thm. 3.2).
Loosely, Thm. 3.2 is based on the idea that,

when provided sufficient background, human text
is not biased because it is typically context-aware
(Def. 3.4). For example, when the subject is a fe-
male scientist, a human will likely not use male
pronouns in subject-referring conversation because
humans tend to correctly employ dialogue context
to inform their language use. Instead, in many
real-world datasets, bias is an aggregate property,
arising from inequality of the proportions of pro-
tected attributes such as race or gender; e.g., more
conversations about male than female doctors.

The theoretical understanding we contribute is
imperative because it informs algorithm design. In
particular, using our theory, we can predict:
1. the most equitable algorithms for unseen data;
2. counter-intuitive properties of algorithms that

lead to less equitable results.
For example, consider algorithms which naïvely
augment data to remove bias (Zhao et al., 2018a;
Park et al., 2018). Through theoretical study, we
identify cases where this practice can actually hurt
an algorithm’s chances at learning to be equitable.
In fact, our experiments in § 4 confirm this.

The remainder of the paper is organized as fol-
lows: § 2 provides background to position our
contributions including discussion of related work,
a brief tutorial on the employed learning theo-
retic framework, and a few running examples used
throughout the text; § 3 provides our theoretical
contributions including formulation of mathemati-
cal notions of equity in text generation and theoret-
ical analysis of learning algorithms; § 4 conducts
experiments which validate our theory in practice;
and finally, § 5 concludes the work. Code, data, and
a python package will be made publicly available
to promote further research.1

1https://github.com/anthonysicilia/equitable-dialogue-

2 Background and Related Work

2.1 Learning Theory for Dialogue

Recent proposals for the use of learning theory in
dialogue are due to Sicilia and Alikhani (2022) who
propose LEATHER.2 Specifically, LEATHER is a for-
mal framework for studying the diverse objectives
present when learning to generate text. Ultimately,
their proposal is grounded in a general evaluation
metric – the test divergence. Intuitively, test di-
vergence mimics practical evaluation, in which we
conduct tests to evaluate the generated dialouge:

TDG(θ) = E[|h(D,U)− h(D̂, U)|]

where (C,D) ∼ G, D̂ ∼ Pθ(C), U ∼ U.
(1)

Of course, there are a number of undefined terms
here: specifically, the test h, the context C, the goal
dialogue D, the learned dialogue D̂, and the un-
observed effects U . Below, we explain each, using
examples from Figure 2 to assist our exposition.

Goal Distribution The goal distribution G is
a joint probability distribution over dialogue con-
texts c ∈ C and dialogues d ∈ D. For Sicilia and
Alikhani (2022), the goal is to generate human-like
text. So, as in the visual dialogue example in Fig-
ure 2, the context might be an image/goal-object
and the goal dialogue might be sampled from a
(human) corpus of QA pairs with this context.

Learned Dialogue Distribution The learned di-
alogue distribution is the probability kernel Pθ(C)
that provides a distribution over dialogues, condi-
tional to the parameters θ learned by the machine
(e.g., neural parameters) as well as the random dia-
logue context C. The precise manner in which dia-
logue occurs will vary from system to system, but
typically involves a machine generating/prompting
responses to/from human users as in Figure 2. This
interaction implicitly defines the random process
through which a set of parameters θ and a random
context C produce a predicted dialogue D̂. Impor-
tantly, the learning machine may not control every
aspect of the process – e.g., the human responses.
Aptly, we encapsulate this unknown randomness by
the distribution Pθ(C). In some cases, we will con-
sider the joint distribution of both (goal) contexts
and learned dialogues; i.e., of the random tuple
(C, D̂). We write Ĝθ for this joint distribution.
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Figure 2: Toy examples of visual (left) and educational (right) dialogues. Key learning-theoretic terms are labeled.
A common inequity of dialogue systems is pictured (i.e., misidentifying gender).

Test Function with Unknown Effects The final
component is the test function (or simply test) h.
The test takes as its primary input a dialogue and
returns a value in the interval [0, 1]. Conceptually,
a test can represent any evaluation process in which
we are interested. For example, some tests com-
monly employed in practice include n-gram over-
lap metrics such as BLEU (Papineni et al., 2002),
sentiment scores from a pre-trained classifier, or
even a score attained through human evaluation.
The unknown effect U ∼ U represents any addi-
tional information needed to completely determine
the outcome of the test. When the test is BLEU,
U simply takes the form of a reference dialogue
to which the input dialogue is compared. For hu-
man evaluation, U encapsulates all of the unknown
variables that contribute to the randomness of a real-
world experiment. Often, U may not be needed.

Interpretation With terms defined, it is easy to
see the test divergence is a direct comparison of the
output of the test from the goal dialogue D to the
predicted dialogue D̂, learned by our dialogue sys-
tem. Larger test divergence indicates the learned
dialogue fails to replicate the goal dialogue along
the dimensions targeted by the test. For example,
if the goal is human-likeness in the visual dialogue
example from Figure 2, a test might target question
strategies (Shekhar et al., 2019). Small test diver-
gence in these cases indicates the learned dialogue
uses similar strategies as the (human) goal.

2.2 Related Works on Equity
In natural language, popular, early studies of equity
begin with avoiding stereotyping in learned model
representations (Bolukbasi et al., 2016). This ap-
proach has continued to inspire many de-biasing
techniques for learned representations (Zhao et al.,

2018b; Madras et al., 2018; Wang et al., 2020)
and evaluation techniques for the equity of repre-
sentations (Caliskan et al., 2017; Ethayarajh et al.,
2019). De-biasing and evaluation techniques for
model representations have also been adapted for
text-generation tasks (Escudé Font and Costa-jussà,
2019; Yeo and Chen, 2020; Guo et al., 2022).

Still, these model-intrinsic approaches to re-
solving inequity have proven subpar compared
to model-extrinsic approaches, which focus di-
rectly on the downstream task (Gonen and Gold-
berg, 2019; Cao et al., 2022). For this reason,
our approach tackles the problem of equitable di-
alogue generation from an extrinsic point-of-view.
Previously, in text-generation, extrinsic points-of-
view have typically used change in scoring func-
tions (e.g., for sentiment, gender-polarity, etc.) to
measure equity (Liu et al., 2020; Vu et al., 2020;
Dhamala et al., 2021, 2022; Das and Balke, 2022).
Our work is in line with these, but provides for-
mal theoretical study, and further, focuses more
specifically on dialogue. Formal theoretical study
is vital to understanding equity, because impreci-
sion in problem assumptions and objectives has
already proven to be a pitfall in existing works on
equity (Blodgett et al., 2021). For example, in clas-
sification, detailed theoretical study reveals a com-
plex relationship of trade-offs between accuracy
and (some) notions of equity (Zhao and Gordon,
2019; McNamara et al., 2019; Dutta et al., 2020),
contributing to algorithmic advances (Zhao et al.,
2019). Our work continues this trajectory, offering
valuable practical insights, which are sometimes
unintuitive, to achieve equity in machine dialogue.

Finally, it is worthwhile to note that Liu et al.
(2020) also contribute a formal, theoretical defini-
tion of fairness in dialogue. Our work contributes



a more general definition of equity – i.e., which
supports arbitrary types of dialogue context and
more general types of dataset bias. As noted, we
also make connections with learning theory to pro-
vide key insights on algorithm and dataset design.
Indeed, ours is the first work to study bias in text
generation using these insightful techniques from
computational learning theory.

3 Formalizing Equity in Dialogue

3.1 Formal Definitions for Equity

In this part, we introduce some formal, mathemati-
cal notions of equity. We start with a general notion
of equity in dialogue and show how this can be spe-
cialized to compare with ideas of equity in the clas-
sification literature. For proofs, see Appendix A.

Protected Attributes To begin, we need to first
define the notion of a protected attribute. Con-
ceptually, this is the sensitive variable (e.g., race,
gender, religion, etc.) that we intend to “protect”
by the equity constraint. Otherwise, presumably,
system inequities would disproportionately, nega-
tively impact the sub-population captured by the
attribute. Throughout this work, we use a variable
a ∈ A = {0, 1} to denote the protected attribute
and we measure equity of the text with respect to
this variable. Precisely, a = 1 implies the dia-
logue context exhibits the attribute (e.g., female
gender, Black race, Muslim religion), while a = 0
implies the context does not exhibit the protected
attribute. For example, in the educational dialogue
from Figure 2, the context is a discussion topic and
the protected attribute is female gender. Since the
topic is a female scientist, it exhibits the protected
attribute and we would have a = 1. If the topic
was “Science” more generally, it would not exhibit
the protected attribute and it would be appropriate
to set a = 0. In general, we expect the protected
attribute to vary randomly with the dialogue con-
text C. To model this in a general way, we assume
the attribute is sampled from a probability distri-
bution which is dependent on the random context:
A ∼ A(C). For example, in the visual dialogue
from Figure 2, the protected attribute A is female
gender, which is non-deterministically dependent
on the visual features of the image C. In other
cases, like the educational example, the protected
attribute may be completely determined by context.
A can model this as well – e.g., as a point mass.

Equity as Score Parity Commonly, equity in ma-
chine learning systems is formally defined through
a notion of parity (Kamiran and Calders, 2009;
Zhao and Gordon, 2019). In dialogue, we can ex-
press parity as the following requirement:

The system uses language in the same
way, regardless of protected attribute.

This intuitive notion of equity is vague in its use of
“way” to be general, allowing for specification to
different applications. For example, Das and Balke
(2022); Dhamala et al. (2022) both consider the
toxicity and sentiment of language as the pertinent
“way” in which language is used, when measuring
equity. A classifier is used to estimate the toxicity
or sentiment of the used language, and equity oc-
curs if this classifier’s outputs are invariant of the
protected attribute. For example, if the protected
attribute is Muslim religion, the dialogue should
be no more “toxic” when its context is specific to
Muslims, than when its context is not specific to
Muslims. Below, we formalize this intuition for
equity with a mathematical constraint.

Definition 3.1. (Score Parity) A contextualized
dialogue distribution3 G with (C,D) ∼ G and
A ∼ A(C) satisfies score parity if

E[s(D, 0) | A = 0] = E[s(D, 1) | A = 1] (2)

where s is a scoring function s : D ×A → [0, 1].

To arrive at our motivating example (Das and
Balke, 2022; Dhamala et al., 2022), one simply
chooses the scoring function s to be a toxicity clas-
sifier or a sentiment classifier. The expected output
of this classifier should be the same, regardless
of the protected attribute’s setting. In general, if
equality does not hold in the above definition of
parity, we follow Zhao and Gordon (2019) using ∆
to denote the gap across attributes:

∆(G) = |E[s(D, 0) | A = 0]−E[s(D, 1) | A = 1]|. (3)

This lets us talk about degrees of inequity, and
therefore, measure progress towards our ideals.

Multi-Category Score Parity Notice, we use the
presence/absence of singular demographic groups
(e.g., female v. not female) instead of binary com-
parisons (e.g., female v. male) in defining the pro-
tected attribute. This choice allows our definition

3Frequently, we use contextualized dialogue distribution
to refer to any joint distribution over contexts and dialogues.



of equity (above) and later theory to support study
of general multi-category attributes with more than
two attributes like race (e.g., Black, White, Asian)
or religion (e.g., Muslim, Jewish, Catholic). Using
race as an example, we can measure the parity gap
when Black is the protected attribute, White is the
protected attribute, Asian is the protected attribute,
etc. The dataset is then equitable for all races (ac-
cording to score parity) if all measured parity gaps
are 0. In this way, our definition and subsequent
results can generalize to the multi-category case.
We use this strategy, for example, in Section 4.

Comparison to Demographic Parity In classi-
fication, demographic parity is a commonly stud-
ied notion of equity (Kamiran and Calders, 2009;
Calders et al., 2009; Zemel et al., 2013), which
stipulates that a classifier’s outputs should be inde-
pendent of the protected attribute. For a classifier
c, mapping random features X to a {0, 1}-valued
label, this can be written:

E[c(X) | A = 0] = E[c(X) | A = 1]. (4)

For score parity, when s(·, 0) = s(·, 1), the scoring
function s does not depend on the attribute and we
see that score parity is a direct reflection of demo-
graphic parity. Whereas classification problems use
machine learning to select the classifier c in a fair
way, dialogue uses machine learning to select the
feature distribution X (i.e., D in our definition).

Comparison to Accuracy Parity Depending on
the application, it is known that demographic par-
ity can also be an inappropriate constraint; e.g., if
the classifier c is meant to predict the protected
attribute itself (Zhao and Gordon, 2019). This pre-
cise situation is inherent to dialogue, since some
aspects of language are compulsorily predictive of
the protected attribute (e.g., gendered pronouns or
religious terminology). Fundamentally, there is a
trade off between the accuracy of the language used
and the desired invariance. In these cases, Zhao
and Gordon (2019) suggest accuracy parity as an
alternative, which requires equal error rates, regard-
less of protected attribute. For Y the true label to
X and c as in Eq. (4), this can be written:

Pr(c(X) ̸= Y | A = 0) = Pr(c(X) ̸= Y | A = 1). (5)

By our definition, score parity can be used to re-
flect this distinct notion from classification as well.
Conceptually, we select our scoring function to
measure the correctness of the dialogue. Then, just

like accuracy parity, score parity enforces equal
error rates, regardless of protected attribute. While
details may vary based on application, we consider
selecting the scoring function in the examples from
Figure 2. We first define an identifier function
v : D → {0, 1} which indicates whether a dia-
logue d ∈ D verbalizes the protected attribute. For
example, we can imagine v scans for female gen-
dered words {she, her, girl, ...}. Then, our system
makes an “error” if it fails to verbalize the protected
attribute or inappropriately verbalizes the attribute.
So, we select the scoring function to reflect this:

s(D,A) = |A− v(D)|. (6)

With the choice of scoring function above, score
parity reflects the intuition of accuracy parity by re-
quiring that the correctness of the language use (in
referring to a protected attribute) is independent of
the protected attribute. As alluded, this constraint
can be especially useful in case spurious correla-
tions (i.e., stereotypes) between protected attributes
and context cause different error rates with/without
a protected attribute. This is the case in our toy
examples (Figure 2) as well as some real-world
generation tasks (Hendricks et al., 2018).

Takeaways The formalization of equity we intro-
duce – score parity – is both general and useful. It
models existing ideas for empirical evaluation of
equity in text-generation (Hendricks et al., 2018;
Das and Balke, 2022; Dhamala et al., 2022) and can
also be used to model disparate notions of equity
from existing classification theories (Kamiran and
Calders, 2009; Calders et al., 2009; Zemel et al.,
2013; Zhao and Gordon, 2019). Ultimately, the
choice of the scoring function s determines the
“way” in which the language should be invariant to
the protected attribute, and subsequently, dictates
the motivating goals of the equity constraint.

3.2 Evaluating Equity with Learning Theory
Next, we show how learning to generate equitable
text can be modeled with learning theory.

Test Divergence (Reprise) To evaluate equity
with LEATHER, the objective in Eq. (1) remains
largely unchanged. Primarily, we explicitly incor-
porate the protected attribute:4

TDG(θ) = E[|h(D,A,U)− h(D̂, A, U)|] where

(C,D) ∼ G, D̂ ∼ Pθ(C), A ∼ A(C), U ∼ U.
(7)

4Equivalently, one can group A with the unknown effects
and keep Eq. (1). The rewrite only makes assumptions explicit.



Importantly, we must consider the deviations from
Sicilia and Alikhani (2022) not present in Eq. (7):
(1) the choice of goal distribution G and (2) the
choice of test h. Originally, Sicilia and Alikhani
focus on evaluation of human-like dialogue, and
therefore, propose the goal to be defined by any col-
lected corpus of contextualized human dialogues.
Instead, we are interested in the equity of the con-
textualized dialogue and cannot blindly use human
dialogue as an example; i.e., we cannot take for
granted that the contextualized human dialogue is
equitable. Thus, to appropriately evaluate equity,
we generally assume the following constraints on
the goal distribution and test.

Equitable Goals and Tests
Definition 3.2. (Balanced) A contextualized dia-
logue distribution G is balanced if it assigns equal
(marginal) likelihood to the protected attribute:

Pr(A = 1) = Pr(A = 0); (C, ·) ∼ G, A ∼ A(C). (8)

Definition 3.3. (Equitable Goal) We say a contex-
tualized dialogue distribution G with (C,D) ∼ G
is an equitable goal distribution if it is balanced
and satisfies score parity (for some fixed score s).

So, intuitively, we propose the goal in equitable
dialogue is a contextualized dialogue distribution
which is itself equitable, according to our formal
definition of this property – i.e., score parity. Fur-
thermore, it should be balanced to prioritize the
protected attribute equally during evaluation. As
we’ll see later, choosing the test h to be the scoring
function s from our previous definition allows us
to use TD (with an equitable goal) to control the
parity gap of our learned dialogue.

Biased Data While the formal definition above
(Def. 3.3) is about equity, it should also be noted
that we implicitly arrive at a formal definition for
bias: the absence of equity. In particular, a con-
textualized dialogue distribution (dataset) is biased
if it is not equitable. Note, this also distinguishes
biased data from other common concepts like noisy
data because we use an expectation to quantify par-
ity; i.e., which is immune to non-systemic noise.

Small Test Divergence Implies Equity
Theorem 3.1. Consider an equitable goal G and
let h ≡ s (the scoring function). Then, ∆(Ĝθ) ≤ ϵ
whenever TDG(θ) ≤ ϵ/2.

Simply, the above result indicates minimization
of TD with an equitable goal and appropriate test
leads to an equitable learned dialogue distribution.

Takeaways An important consequence of Thm.
3.1 is the ability to confidently use algorithms de-
signed in the LEATHER framework (i.e., to reduce
test divergence) for equitable dialogue learning.
While these algorithms may have originally been
designed to learn human-like dialogue, they can
easily be modified to learn equitable dialogue. In
particular, we need only change the goal from any
human dialogue distribution to any equitable di-
alogue distribution – as in Def. 3.3. Portability
of algorithms in the sense described means, ulti-
mately, a unified theory for dialogue generation.
For any algorithm we propose, we may conduct a
singular theoretical analysis of test divergence that
can serve multiple purposes – both human-like and
equitable dialogue generation. In other words:

LEATHER-based algorithms for human-
likeness can be used to learn equitable
text by simply augmenting training data.

Some standard examples of how to create the new
equitable goal G include augmenting data in the
dataset to achieve equitable constraints (Zhao et al.,
2018a; Park et al., 2018). The takeaway from our
theorem above agrees with existing empirical study:
we can typically expect these strategies to be effec-
tive. Still, as we see next, there are other effective
alternatives (under the right assumptions).

3.3 Learning to be Equitable and Human-like
Next, we study the circumstances under which the
goals of human-like dialogue learning and equi-
table dialogue learning align. That is, we study cir-
cumstances under which an algorithm designed to
minimize TD can learn from (biased) human-like
goal data and simultaneously learn to be equitable.

Context and Its Role (Assumptions)
Definition 3.4. (Context-Awareness) Consider an
equitable goal distribution G. A contextualized
dialogue distribution H ̸= G is context-aware if 5

Pr(D|C) = Pr(D̃|C̃); (C̃, D̃) ∼ H, Ã ∼ A(C̃). (9)

Definition 3.5. (Context-Preservation) The distri-
bution H preserves context if

Pr(C|A) = Pr(C̃|Ã); (C̃, D̃) ∼ H, Ã ∼ A(C̃). (10)

The definitions are based on the idea of label-
shift used to study data-shift at test time (Lipton

5We use the shorthand Pr(C|D) = Pr(C̃|D̃) to mean:
Pr(C = c|D = d) = Pr(C̃ = c|D̃ = d) ∀ (c, d) ∈ C ×D.



et al., 2018). In this paper, we think of H as the
possibly inequitable distribution of human contex-
tualized dialogues (determined by some corpus).
So, these definitions can be viewed as assumptions
of how inequity presents itself in human data.

Context-awareness assumes that humans are not
biased provided the background context C. Concep-
tually, this is reasonable, since humans use context
to form inferences about attributes of other human
subjects (even protected attributes). If background
is sufficient, human inferences will often be correct
inferences and the dialogue should be equitable
with respect to accuracy parity, at least.6 Instead,
bias in the considered corpus must arise from ag-
gregate disproportions of attributes (see § 1).

Context-preservation assumes that the presenta-
tion of the context for attributes does not change.
In other words, the features of the protected at-
tribute which present themselves through the con-
text should be invariant across G and H. For exam-
ple, if one attempts to infer race from an image, this
assumption simply states the visual features indica-
tive of race should be consistent. The assumption
would be violated, for example, if G protects Asian
males and H protects Asian females.

Test Divergence Learning Bound In this part,
for simplicity, we assume the parameters θ are
learned from a finite space Θ. Other proof tech-
niques may allow arbitrary Θ; e.g., Maurer (2004).

Theorem 3.2. Consider an equitable goal G with
associated test h. Suppose a sample of i.i.d. human
data is collected S = (C̃i, D̃i)

m
i=1; (C̃i, D̃i) ∼ H.

Suppose H is context aware and preserves context.
Then, for all δ > 0, with probability at least 1− δ,
for all θ, 2β ×TDG(θ) is bounded above by

1

m

m∑
i=1

|h(D̃i, Ãi)︸ ︷︷ ︸
human

−h(D̂′
i, Ãi)︸ ︷︷ ︸

predicted

|+
√

log|Θ|+ln 2/δ
2m︸ ︷︷ ︸

data efficiency

(11)

where β = minaPr(Ã = a).7

For interpretation, we break down the upper-
bound on 2β × TDG(θ) into two terms: (a) the
difference in test output from the human dialogue
to the predicted dialogue and (b) a data efficiency
term dependent on the number of i.i.d samples m.

6Perfectly correct dialogue satisfies accuracy parity be-
cause it satisfies s ≡ 0 in Eq. (6), regardless of A.

7Note, we also pose a technical requirement: pairwise in-
dependence must hold (conditional to the context) between
the human dialogue, the predicted dialogue, and the protected
attribute. This is not an overly strong assumption; see Ap-
pendix A.2.3 for a detailed discussion with examples.

Equity from Biased Data Notice, the predicted
dialogue in (a) is dependent on the human dia-
logue’s context C̃i – not the goal dialogue’s context
C – so (a) is actually identical in definition to TDS,
an empirical observation of TDH. That is, (a) is
test divergence computed on a human corpus as
was done by Sicilia and Alikhani (2022). Since (a)
uses a human dialogue corpus to define its goal,
Eq. (11) implies that learning human-like dialogue
(via LEATHER) can also optimize the equity of the
dialogue by reducing an upperbound on the eq-
uitable goal TDG. This is true even if the goal
human data is biased. In other words:

LEATHER-based algorithms learn human-
likeness and equity, even on biased data.

We only require the human data to be context-aware
and preserve context (Defs. 3.4 and 3.5).

Data Efficiency The above interpretation of (a)
is only valid if the data efficiency term (b) is also
small. For interpretation, we consider the size of
the parameter space Θ fixed and focus on the num-
ber of i.i.d training samples m. As m increases,
(b) ultimately goes to 0 and the effect of (a) domi-
nates the bound. In some cases though, if m is too
small (b) can also have an impact. For example,
this may be the case when using data-augmentation
strategies to create a more equitable distribution.
In particular, augmentation reduces the number of
i.i.d. data points by creating dependencies in the
data, which can reduce the data-efficiency of learn-
ing algorithms (Ralaivola et al., 2010). That is,
augmentation can increase the size of (b) in learn-
ing bounds on test divergence,8 or in other words:

Augmenting training data to improve eq-
uity can reduce data-efficiency, and ulti-
mately, model performance.

Impact does depend on the augmentation strategy,
so we study common proposals for equity, next.

4 Experiments

In Section 3, we conclude by outlining algorithmic
insights revealed by our theory. Next, we test these
theories on the GuessWhat?! game corpus.

4.1 Dataset, Algorithms, and Evaluation
Unless otherwise noted, we use identical experi-
mental settings, hyperparameters, etc. as Shekhar
et al. (2019); Sicilia and Alikhani (2022).

8For discussion, see the pf. of Thm. 3.2 and remarks.



acc ↑ ldiv ↑ qdiv ↑ repq ∆ (F) TD (F) ∆ (M) TD (M) hum.eval. (F/M) ↑
CL 55.9 10.7 14.3 58.2 52.6 28.8 23.7 33.5 52.0 / 72.0

LEATHER 56.9 12.7 16.0 47.5 29.1 27.2 14.7 29.7 68.0 / 64.0
DS 58.0 12.2 14.8 43.8 35.8 28.9 2.3 30.7 66.0 / 66.0

Table 1: Comparison of algorithms after 100 epochs of pre-training and 100 epochs of self-play. Generally, objective is 0 on
100 point scale with exceptions denoted by up arrows. The first 4 metrics test human-likeness. The last 5 test equity.

Dataset Our dataset is the corpus for the Guess-
What?! game proposed by De Vries et al. (2017).
Gameplay is described in Figure 1 and an example
is shown as the visual dialogue in Figure 2. We
also give a detailed description of the game rules
in Appendix A.5. We use the original train/val.
splits and provide statistics on this corpus in Ap-
pendix A.5. For training, unless otherwise noted,
we use the full train set and report 1 seed. We fo-
cus on modelling the question-player and use an
automated answer-player trained on human data.

Protected Attribute For these experiments, we
use gender (male and female) as the protected at-
tribute. When the protected attribute is female
gender (F), we set a = 1 as long as all human
dialogues use at least one female-gendered word.9

When the protected attribute is male gender (M),
we set a = 1 as long as all human dialogues use at
least one male-gendered word.10 Conceptually, this
labeling scheme uses human annotator consensus
to determine when it is appropriate or inappropriate
to ask gender-specific questions: if a = 1, all hu-
man annotators perceive the protected gender to be
present in the image and relevant to gameplay. Im-
portantly, the labeling scheme also implies that the
human dialogue satisfies our assumptions in § 3.3:
context awareness (Def. 3.4) and context preser-
vation (Def. 3.5); i.e., as shown in Appendix A.3.
Different conceptualizations of how the protected
attribute should be defined are possible, but we
focus on this scheme because it allows us to sim-
ulate the assumptions of our theory in § 3.3, and
therefore, best test our theory in practice. As a fi-
nal note, while we focus on male/female gender in
these experiments, using more than two categories
for protected attributes is also possible. Simply,
one checks the parity gap for each new protected
attribute to be added. This would allow our theoret-
ical and empirical study to be extended to general
multi-category attributes; e.g., race or religion.

CL Algorithm CL is a cooperative learning algo-
rithm proposed by Shekhar et al. (2019) to model

9{she, woman, her, hers, gal, girl, women, gals, girls}
10{he, man, him, his, guy, boy, men, guys, boys}

the question-player. The algorithm is based primar-
ily on a self-play learning phase (Das et al., 2017)
which learns from machine-machine dialogue. This
is used in addition to (after) a more traditional su-
pervised learning phase (i.e., on human-human dia-
logue). See Appendix A.6 for details.

LEATHER Algorithm An extension of CL pro-
posed by Sicilia and Alikhani (2022) with the pur-
pose of better optimizing test divergence during
the self-play learning process. Through some theo-
retical analyses, ultimately, the authors propose to
regularize the self-play phase by re-incorporating
human-human data from the supervised phase.

DS Algorithm A modification of the LEATHER
algorithm. While re-incorporating human data, an
augmentation (downsampling) strategy is used to
balance occurrence of protected attributes; i.e., like
other strategies for equity (Zhao et al., 2018a; Park
et al., 2018). See Appendix A.4 for details.

Human-Likeness Evaluation To evaluate hu-
man likeness, we use metrics proposed by Shekhar
et al. (2019): average accuracy acc in identifying
the true goal-object across three random seeds, av-
erage lexical diversity (ldiv; type/token ratio over
all dialogues), average question diversity (qdiv;
% unique questions over all dialogues), and aver-
age percent of dialogues with repeated questions
(repq). We report these on the full test data.

Equity Evaluation To evaluate equity, we focus
on accuracy parity; i.e., score parity with scoring
function described in Eq. (6).11 To replicate evalu-
ation against the goal distribution in Def. 3.3, we
apply an augmentation strategy to the test set (sim-
ilar to the DS algorithm; see Appendix A.4). Be-
cause our ground truth data is inferred from human
annotators focused on game success, we also incor-
porate additional human annotations. hum.eval.
is % of model dialogues using gendered words cor-
rectly based on annotation (50 per method per an-

11We focus on accuracy parity because the dataset we con-
sider is not likely to exhibit any significant parity issues in
toxicity, sentiment, etc. Instead, the systemic biases in the
data are most likely to impact accuracy parity.



notator). Namely, two annotators12 were asked to
determine correctness of gendered word use, evalu-
ating both incorrect usage as well as false negatives;
i.e., where use would be appropriate/helpful.13

4.2 Results

LEATHER produces human-like, equitable text.
In Tab. 1, LEATHER improves upon CL in terms of
both human-likeness and equity, across all metrics.
These observations validate our theoretical analy-
ses. In particular, LEATHER (as the name implies)
is designed based on the LEATHER framework to
minimize test divergence. From previous work, we
know this means it should improve human-likeness
(Sicilia and Alikhani, 2022). Now, from our cur-
rent theoretical study (Thm. 3.2), we also hypoth-
esize LEATHER can improve equity as long as cer-
tain assumptions are met (Def. 3.4, 3.5). Since
the dataset we study satisfies the specified assump-
tions, our theoretical expectation of LEATHER is the
multi-faceted improvement we observe. That is,
our theory predicts the empirical improvements in
human-likeness and equity achieved by LEATHER.
The ability of our theory to predict the impact of
algorithm design choices is an important practi-
cal implication. We are also able to draw similar
conclusions for DS, which we discuss next.

DS does not improve equity as well as LEATHER,
but overall, its behavior aligns with our theoret-
ical predictions. Thm. 3.2 also makes the obser-
vation that data-augmentation strategies like DS can
sometimes perform worse than alternatives which
focus only on human-likeness (i.e., due to data-
inefficiency). Since DS does augment data signifi-
cantly, we might expect DS to perform worse than
LEATHER, and ultimately, it does in Tab. 1 (all met-
rics but ∆ M). With that said, another of our theo-
retical results (Thm. 3.1) suggests data-augmented
versions of LEATHER algorithms like DS can, in fact,
improve equity, especially in more general cases
where data does not satisfy the circumstances of
our experimental data. In experiments, this insight
is reflected in comparing DS and the baseline. DS
outperforms CL in Tab. 1 on all metrics but TD F.

Test divergence models equity well. Finally, we
recall test divergence is the key link between ex-

12College educated, native English speakers.
13To prime responses, annotators were prompted with ques-

tions like “If any gendered words were used, were they used
correctly?” as well as “If a gendered word was not used, would
it have been helpful to use one to complete the task?”.

isting learning theoretic work and our analysis of
equitable dialogue. In particular, we show, theo-
retically speaking, that 2TD always bounds the
parity gap ∆, which measures equity. As a result,
learning theory algorithms can implicitly learn to
be fair in many cases. Indeed, empirical results
in Tab. 1 agree with this theoretical bound in ev-
ery case, and further, suggest TD may be useful
at ranking equity of algorithms, since TD is pre-
dictive of all improvements from CL to LEATHER.
Again, our theoretical predictions match our empir-
ical observations, highlighting the practical utilitiy
of our theory.

5 Conclusions

In this paper, we provide a first in-depth study
of equity in dialogue, formalizing mathematical
notions of equity in dialogue and using computa-
tional learning theory to study how equity can be
achieved through algorithm design. Our empirical
results show how our formal theoretical study of
equity in dialogue can be used, with great benefit,
to select and design algorithms in a task-oriented
dialogue setting. In particular, we can: design
algorithms that achieve both equity and human-
likeness, predict unexpected consequences of data-
augmentation, and provide proxy statistics that are
useful in ranking the equity of algorithms. To pro-
mote further research, our code, data, and a python
package will be made publicly available.14

Limitations

While our theoretical work is broadly applicable to
any protected attribute and any dialogue task, our
empirical study has primarily tested gender bias
on the GuessWhat?! task. Continued experimen-
tal study on a wider range of protected attributes
and tasks can better support our mathematical find-
ings. Also, users of our theory should verify the
assumptions of our theory when using it to draw in-
sights on new datasets. Specifically, as the type of
data bias changes, it is possible the assumptions of
Thm. 3.2 may no longer be met. Users of our the-
ory should take care in ensuring context-awareness
and context-preservation, for example, are reason-
able assumptions on new data, prior to applying
the insights of § 3.3. Lastly, while all of our gen-
der annotations come from human annotators, only
a smaller subset come from annotators primed to

14https://github.com/anthonysicilia/equitable-dialogue-
ACL2023

https://github.com/anthonysicilia/equitable-dialogue-ACL2023
https://github.com/anthonysicilia/equitable-dialogue-ACL2023


judge correctness/equity of gender reference. So,
more in-depth human evaluation can better support
our theoretical results as well.

Ethics Statement

The goal of this paper is to present a theoretically
grounded framework to mitigate bias in dialogue
systems. Our theoretical and empirical techniques
can lead to important insights/solutions for algo-
rithm design that reduce bias, along with any un-
intended harm associated with this bias. With this
said, some of the proposed algorithms rely on pre-
trained models such as word or image embeddings,
and any harm or bias associated with these models
can still be present after efforts to mitigate. Thus,
models trained with these techniques should still
undergo rigorous human evaluation for presence of
biases before being deployed.

Our human subject board approved our protocol.
Human subjects participated voluntarily and were
compensated according to the regulations approved
by our human subject review board.
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A Proofs and Additional Technical Discussion

A.1 Proof of Thm. 3.1
Claim. Consider an equitable goal G and let h ≡ s (the scoring function). Then, ∆(Ĝθ) ≤ ϵ whenever
TDG(θ) ≤ ϵ/2.

Proof. Suppose TDG(θ) ≤ ϵ, then we have

ϵ ≥ E
[∣∣s(D,A)− s(D̂, A)

∣∣]
=

∑
a∈A

Pr(A = a) ·E[
∣∣s(D,A)− s(D̂, A)

∣∣ | A = a] (Law of Total Expectation)

=
1

2

∑
a∈A

E[
∣∣s(D,A)− s(D̂, A)

∣∣ | A = a] (Balance of G)

≥ 1

2

∑
a∈A

∣∣E[s(D,A)− s(D̂, A) | A = a]
∣∣ (Jensen’s Inequality)

(12)

Now, since G is equitable we have there is some value x such that for all a ∈ A, we have E[s(D,A) |
A = a] = x. Substituting and expanding the sum over A, we have∑

a∈A

∣∣E[s(D,A)− s(D̂, A) | A = a]
∣∣ = ∣∣x−E[s(D̂, 0)]

∣∣+ ∣∣x−E[s(D̂, 1)]
∣∣. (13)

Next, we put together the previous two equations and utilize the definition of the absolute value to break
the proof into cases. For ease of presentation, we let

µ = min{E[s(D̂, 0)],E[s(D̂, 1)]} and M = max{E[s(D̂, 0)],E[s(D̂, 1)]}. (14)

This gives

2ϵ ≥


E[s(D̂, 0)]− x+E[s(D̂, 1)]− x if µ ≥ x,

x−E[s(D̂, 0)] + x−E[s(D̂, 0)] if M ≤ x,

E[s(D̂, 0)]− x+ x−E[s(D̂, 1)] if E[s(D̂, 0)] ≥ x ≥ E[s(D̂, 1)],

x−E[s(D̂, 0)] +E[s(D̂, 1)]− x if E[s(D̂, 1)] ≥ x ≥ E[s(D̂, 0)].

(15)

In the last two cases, occurrences of x cancel out and we have precisely 2ϵ ≥ ∆(Ĝ), precisely. Then, in
the first case, we have

E[s(D̂, 0)]− x+E[s(D̂, 1)]− x ≥ E[s(D̂, 0)]− µ+E[s(D̂, 1)]− µ = M − µ. (16)

In the second case, we also have

x−E[s(D̂, 0)] + x−E[s(D̂, 0)] ≥ M −E[s(D̂, 0)] +M −E[s(D̂, 1)] = M − µ. (17)

Thus, in all cases, we have 2ϵ ≥ ∆(Ĝ), the desired result.

A.2 Proof of Thm. 3.2
A.2.1 Proof
Claim. Consider an equitable goal G with associated test h. Suppose a sample of i.i.d. human data is
collected S = (C̃i, D̃i)

m
i=1; (C̃i, D̃i) ∼ H. Suppose H is context aware and preserves context. Then, for

all δ > 0, with probability at least 1− δ, for all θ, 2β ×TDG(θ) is bounded above by

1

m

m∑
i=1

|h(D̃i, Ãi)︸ ︷︷ ︸
human

−h(D̂′
i, Ãi)︸ ︷︷ ︸

predicted

|+
√

log|Θ|+ln 2/δ
2m︸ ︷︷ ︸

data efficiency

(18)

where β = minaPr(Ã = a), D̂′
i ∼ Pθ(C̃). As noted in the main text we also pose the requirement of

pairwise independence: first, between D, D̂, and A in the definition of TDG (conditional to C); second,
between D̃i, D̂′

i, and Ãi (again, conditional to the context C̃i).



Proof. First, we enumerate some of the key assumptions for easy reference:

• (A1): H is context aware

• (A2): H is context preserving

• (A3): D, D̂, A are independent conditional to C; and, D̃i, D̂′
i, Ãi are independent conditional C̃i

• (A4):15 Pr(D̂|C) = Pr(D̂′|C̃) since both probabilities represent identical sampling from Pθ

• (A5): Pr(A|C) = Pr(Ã|C̃) since both probabilities represent identical sampling from A

Now, we consider decomposing the joint probability density Pr(D = d, D̂ = d̂, A = a), which
importantly, is the joint density used to compute the expectation in TDG(θ).16 To begin, we have

Pr(D = d, D̂ = d̂, A = a) =
∑
c

Pr(C = c)Pr(D = d, D̂ = d̂, A = a | C = c) (Law of Total Exp.)

=
∑
c

Pr(C = c)Pr(D = d | C = c)Pr(D̂ = d̂ | C = c)Pr(A = a | C = c) (A3)

=
∑
c

Pr(C = c)

Pr(C̃ = c)
Pr(C̃ = c)Pr(D = d | C = c)Pr(D̂ = d̂ | C = c)Pr(A = a | C = c) (×1 trick)

=
∑
c

Pr(C = c)

Pr(C̃ = c)
Pr(C̃ = c)Pr(D̃ = d | C̃ = c)Pr(D̂ = d̂ | C = c)Pr(A = a | C = c) (A1)

=
∑
c

Pr(C = c)

Pr(C̃ = c)
Pr(C̃ = c)Pr(D̃ = d | C̃ = c)Pr(D̂′ = d̂ | C̃ = c)Pr(A = a | C = c) (A4)

=
∑
c

Pr(C = c)

Pr(C̃ = c)
Pr(C̃ = c)Pr(D̃ = d | C̃ = c)Pr(D̂′ = d̂ | C̃ = c)Pr(Ã = a | C̃ = c) (A5)

=
∑
c

Pr(C = c)

Pr(C̃ = c)
Pr(C̃ = c)Pr(D̃ = d, D̂′ = d̂, Ã = a | C̃ = c) (A3)

(19)

Further, we can relate the probability distributions for the contexts C and C̃ through their implied attribute
distributions via (A2)

Pr(C = c) =
∑
a

Pr(C = c | A = a)Pr(A = a) (Law of Total Exp.)

=
∑
a

Pr(C̃ = c | Ã = a)Pr(A = a) (A2)

=
∑
a

Pr(C̃ = c | Ã = a)Pr(Ã = a) · Pr(A=a)

Pr(Ã=a)
(×1 trick)

≤
∑
a

Pr(C̃ = c | Ã = a)Pr(Ã = a) · 1
2β (balance of G and def. of β)

= 1
2βPr(C̃ = c)

(20)

Applying this to our previous outcome, we have∑
c

Pr(C=c)

Pr(C̃=c)
Pr(C̃ = c)Pr(D̃ = d, D̂′ = d̂, Ã = a | C̃ = c)

≤
∑
c

1
2βPr(C̃ = c)Pr(D̃ = d, D̂′ = d̂, Ã = a | C̃ = c)

= 1
2βPr(D̃ = d, D̂′ = d̂, Ã = a) (Law of Total Exp.).

(21)

15Here, we are using the same shorthand from the main text; e.g., in Def. 3.4.
16We ignore U since it is unused in this paper. The proof would be more complicated, but similar had we included U .



Notice, the new joint density Pr(D̃ = d, D̂′ = d̂, Ã = a) can be used to compute the expectation in
TDH, while the previous joint density was used to compute the expectation in TDG. Both expectations
have everywhere non-negative variables. So, ultimately, the relation between the joint densities gives:

TDG(θ) ≤ 1
2βTDH(θ) (22)

To complete the proof, we need to bound the true test divergence on the human data TDH(θ) with our
observation TDS(θ). To do so, without using a test set, we need to apply a PAC learning bound for
parameters selected from a finite hypothesis space (i.e., so that the result holds for any θ learned from Θ).
We choose the structural risk minimization bound presented in Shalev-Shwartz and Ben-David (2014) –
i.e., Thm. 7.7 – and apply it to our context,17 which gives the final result.

A.2.2 Remarks on Data Efficiency
Note, the last step of the proof can be applied directly to TDG(θ) as well, or any other instance of the
test divergence for that matter. In the main text, when we refer to the data-efficiency of augmentation
strategies, it is important to note that these augmentation strategies can change the distribution over which
we compute test divergence. Although this distribution and the resulting test divergence may change,
the data-efficiency term will be effected equally.18 For example, consider downsampling – a simple
augmentation strategy used in the experiments. In this case, if one downsamples to achieve balance in

the frequency of the protected attribute, the data efficiency term would change from
√

log|Θ|+ln 2/δ
2m to√

log|Θ|+ln 2/δ
2αm , where α is fraction of data remaining after downsampling. In an ideal case, where there

is only one protected attribute to consider during re-balancing, we have α = 2β and the data efficiency
is reduced by a factor of 1/

√
2β, compared to no augmentation. The reader may notice LEATHER based

algorithms also experience a reduction in data-efficiency by the slightly larger factor of 1/2β applied to
the whole bound; i.e., see Eq. (22). With this said, the reason we allude to worse data-efficiency overall
for augmentation strategies is that these strategies typically also re-use data to define the augmentation;
e.g., in the mentioned case, where one downsamples for balance, an additional data-efficiency term must
be added to the bound to measure the impact of estimating β from training data prior to conducting
the downsampling.19 Additional reduction can also be induced from imperfect estimation of β, and
furthermore, when there is more than one protected attribute to consider. In the latter case, we may
need to reduce the effective dataset size αm further to simulate balance (as in the later experiments; see
Appendix A.4). Thus, depending on the problem, these compounding effects can easily lead to reduced
efficiency overall; i.e., compared to basic application of LEATHER based algorithms without augmentation
on the whole dataset. Due to the complexity of this comparison, which is dependent on augmentation
strategies, estimation error, etc., we leave formal comparison to future work and simply conjecture on the
potential for worse data-efficiency of data augmentation strategies in the main text. Albeit, this hypothesis
is confirmed in experiments throughout Section 4.2, and it should be noted our main argument here is that
the data-efficiency of augmentation strategies needs to be considered, where it has previously not been in
most literature.

A.2.3 Assumption of Pairwise Independence
As mentioned in the main text, the assumption of pairwise independence is not an overly strong assumption.
Conditional to the context C, pairwise independence stipulates realizations of the random values D, D̂,
and A do not provide additional information about each other once we know C = c. For example, in
GuessWhat?!, knowing the gender does not impact our expectation of the QA pairs, once the image is
already known. Alternatively, knowing predicted QAs does not change our expectation about human QAs,

17To apply the theorem, we define the prefix free description language for Θ by simply enumerating each parameter in Θ
(arbitrary order) and then mapping each parameter to the binary expansion of its assigned numeral. The loss needs to be replaced
with the test divergence as well, but with this replacement, the required uniform convergence property for each individual
parameter is still given by Hoeffding’s Inequality, so the proof as a whole is unchanged beyond this simple substitution.

18Some strategies for measuring data-efficiency depend on the data – our comment excludes these.
19If this added term is γ times the original data-efficiency, the inflation in Eq. (22) actually becomes smaller than the inflation

caused by data augmentation, whenever β > 1/2γ2.



after the image is known. The latter is not so intuitive, but independence of predictions on (test) outcomes
and the outcomes themselves is common among many simple learning models (e.g., fixed effects linear
regression) since the learned parameters are only dependent on the i.i.d. training outcomes.

A.3 Labeling Scheme
As noted, the labeling scheme for the protected attribute studied in the main text allows us to satisfy some
of the key assumptions (on the human data) stipulated by Thm. 3.2: context awareness (Def. 3.4) and
context preservation (Def. 3.5). To see this, we show that there exists an equitable goal according to score
parity with scoring function defined in Eq. (6), and importantly, that this equitable goal is related to the
human data as specified by Defs. 3.4 and 3.5. In turn, the existence of such an equitable goal implies
that the human data and scoring function we study in the experiments does indeed satisfy Def. 3.4 and
Def. 3.5.

Construction of Goal To begin, consider some random variables (D,C,A) with the below constraints,
and let (D̃, C̃, Ã) correspond to random variables for the human data as before. These will be used to
construct the equitable goal we have just previously discussed:

Pr(D = d | C = c) = Pr(D̃ = d | C̃ = c),

Pr(C = c | A = a) = Pr(C̃ = c | Ã = a),

Pr(A = 0) = Pr(A = 1).

(23)

Now, also assume D is independent of A given C (that is, A3 in Thm. 3.2), so we can decompose the
joint distribution of (D,C,A) according to our constraints:

Pr(D = d,C = c, A = a) = Pr(D = d,C = c | A = a)Pr(A = a)

= Pr(D = d | C = d,A = a)Pr(C = c | A = a)Pr(A = a)

= Pr(D = d | C = c)Pr(C = c | A = a)Pr(A = a) (cond. indep. constraint A3)

= Pr(D̃ = d | C̃ = c)Pr(C̃ = c | Ã = a)Pr(A = a) (Eq. 23 constraints)

(24)

Next, we verify there are distributions with this joint density with total probability summing to 1. To do
this, we re-use the above expansion to arrive at:∑

d,c,a

Pr(D = d,C = c, A = a) =
∑
d,c,a

Pr(D̃ = d | C̃ = c)Pr(C̃ = c | Ã = a)Pr(A = a)

=
1

2

∑
d,c,a

Pr(D̃ = d | C̃ = c)Pr(C̃ = c | Ã = a) (assumed constraint on A)

:=
1

2

[
x(1) + x(0)

]
(use x(a) as a shorthand for the sum over d, c)

(25)

Simultaneously, since (D̃, C̃, Ã) already correspond to a distribution, we can use similar logic (i.e., LTE
and conditional independence) to expand the sum over this distribution’s joint density. In doing so, we
must have

1 = Pr(Ã = 0) · x(0) +Pr(Ã = 1) · x(1) := a× x(1) + b× x(0) (defining shorthand). (26)

So, the density in Eq. (25) has total probability summing to 1 if there is a solution with a, b ∈ [0, 1] and
a+ b = 1 to the following system:

1 =
1

2

[
x(1) + x(0)

]
1 = a× x(1) + b× x(0).

(27)

If a ̸= b ̸= 1/2, there are solutions a, b ∈ [0, 1] with a + b = 1 as long as x(1) = x(0), which is
indeed true, since due to (A3) x(a) can be re-written as a conditional joint probability over D̃ and C̃.



Figure 3: Statistics from the GuessWhat?! dataset (De Vries et al., 2017).

So, x(1) = x(0) = 1. Note, the other axioms of probabilities follow directly because the constraints
only restrict the probabilities for (D,C,A) to existing (known) probability functions. Thus, we know a
distribution satisfying the needed constraints in Eq. (23) exists. Specifically, a distribution related to the
human data as specified by Defs. 3.4 and 3.5 exists, and we have shown the desired result.

Equity of Goal Finally, it remains to see how the distribution corresponding to (D,C,A) is equitable.
Score parity follows easily by definition of Ã = v(D̃). In particular, the test divergence on the human
data is 0, so Eq. (22) implies the test divergence on the distribution of (D,C,A) is 0, and so Thm. 3.1
implies the parity gap for the distribution of (D,C,A) is 0. Balance of the distribution of (D,C,A) also
follows easily from the final constraint in Eq. (23), and so we are done.

A.4 Downsampling

The downsampling process for the DS algorithm restricts to images which are determined to have either of
the protected attributes — i.e., a = 1 when M is the protected attribute or a = 1 when F is the protected
attribute — such that there are an equal number of occurrences of a = 1 for both protected attributes.
That is, in the end result, the new training dataset has an equal number of occurrences where annotator
consensus identified a male or a female, and all other images are thrown out. This is achieved through
a simple randomized filtering approach. As noted, images without a = 1 for either protected attribute
are also thrown out. This allows us to ensure we are training a (single) model that will be equitable on
both protected attributes simultaneously,20 which is the primary goal in evaluation. Note, this strategy
does not hurt the object identification accuracy either (as evidenced by empirical results). This may be for
two reasons: first, other objects (besides persons) appear frequently enough in the downsampled dataset
as to not effect performance; second, downsampling is only used in the cooperative learning phase, and
object recognition ability is primarily learned in the pre-training phase. As alluded in our theoretical
discussion, another consequence of this augmentation strategy is that the number of i.i.d. data points is
greatly reduced in the cooperative learning phase (e.g., compared to the LEATHER-based algorithm); i.e.,
we estimate less than 1/6th of the original dataset is used. Therefore, this indeed presents a good example
to test our theoretical hypotheses on the impacts of data augmentation and data-inefficiency.

Downsampling to create the equitable distribution is done in a similar manner, except – since we
don’t need to worry about inefficiency in model training any longer – a separate dataset is created for
each protected attribute. So, there is one dataset with balanced occurrences of a = 1 and a = 0 when
the protected attribute is M, and another dataset with balanced occurrences when the attribute is F.
Importantly, because labeling scheme enforces our assumptions about context hold in the human data (see
Appendix A.3), this should create an equitable goal.

A.5 GuessWhat?! Game Rules and Statistics

Here, we introduce the GuessWhat?! visual dialogue game (De Vries et al., 2017). We use this game
as a running example to ground abstract theoretical concepts in practical application. Importantly,
our theoretical study is more generally applicable (i.e., beyond just this example). Statistics on object
distribution and dialogue length are provided in Figure 3. After applying the labeling scheme and
downsampling (as just described), our dataset consists of about 3200 (half with a = 1) when F is the

20If we include images without labels, we cannot be sure of equal occurrence of both attributes.



protected attribute and 6400 (half with a = 1) when M is the protected attribute. Note, this also indicates
that the ratio of M to F in the original dataset is about 2 to 1.

Gameplay An image and goal-object within the image are both randomly chosen. A question-player
with access to the image asks yes/no questions to an answer-player who has access to both the image and
goal-object. The question-player’s goal is to identify the goal-object. The answer-player’s goal is to reveal
the goal-object to the question-player by answering the yes/no questions appropriately. The question- and
answer-player converse until the question-player is ready to make a guess or at most m questions have
been asked.21 The question-player then guesses which object was the secret goal.

A.6 Cooperative Learning
Cooperative Learning generates questions Q̂i and object guess Ô based on answer player answers Ai as
below:

Ô = Guesα(Encβ(I, D̂))

Q̂i+1 = QGenθ(Encβ(I, Q̂1, A1, . . . Q̂i, Ai).
(28)

The neural-model QGenθ is called the question-generator and the neural-model Guesα is called the object-
guesser. The final neural-model Encβ is called the encoder and captures pertinent features for the former
models to share. All model parameters (α, β, θ) are first pre-trained on human-human dialogue and then
the model-components are further updated through cooperative self-play (Das et al., 2017), in which
the model-components and an automated answer-player play new games (machine-machine dialogue)
to continue the learning process. The shared encoder is used to improve human-likeness of questions
(Shekhar et al., 2019).

Note, the change from Cooperative Learning (above) to Cooperative Learning with LEATHER simply
incorporates additional human data during training the above model, instead of using only machine-
machine dialogue. See Sicilia and Alikhani (2022) for more details on both approaches to cooperative
learning.

21By default, m = 8 following Shekhar et al. (2019).


